Texas Technology Showcase

Energy-Efficient Process Technologies and Best Practices
Chemical and Refining Industries

March 17 - 19, 2003 Houston, Texas

Ultra-Low NOx LeanPremix Burners Eliminate SCRs for Process Heaters

Jim Seebold, ChevronTexaco (Ret) & Richard Waibel, John Zink Co., LLC

What we would *LIKE* to do!

What we would like *NOT* to do!

OK, fine, you may <u>prefer</u> to do burners, but which SCRs make the <u>most</u> sense?

- Really <u>BIG</u> ones ...
- The bigger the better ...
- They're <u>all</u> highly effective ...
- But the bigger they are the more cost-effective they become!

Be Safe or ...

Why we don't like SCRs too much...

It's only money!

... but when we HAVE to go for SCR,

BIGGER is BETTER!

Developing and Retrofitting Ultra Low NOx Burners in a Refinery Furnace

The Skunk Works Approach!

ChevronTexaco

Perception of Difficulty vs. Understanding

Understanding

Lots of ways to skin a cat

Peak
Temperature,
NOx Reaction
Rate,
NOx
Concentration

Not really ... it's all about making a low-Btu fuel!

Air as the Diluent

John Zink LPM 305F

Lean PreMix Burner in the Test Furnace

<u>Fuel</u>

1,440 Btu/scf (27% H₂)

810 Btu/scf (65% H₂)

<u>NOx</u>

9 ppm (@ 3% O₂, 1700°F)

10 ppm (@ 3% O₂, 1700°F)

Chevron Richmond #4 Crude Unit

Ultra² Low NOx Burner Retrofit

SCR Reduction (92%) at a Burner Price!

For process heating you <u>DON'T</u> need a selective catalytic reduction flue gas treatment plant but you really <u>DO</u> need burners so why not super-low NOx burners?

Before 180 ppm

After 15 ppm

John Zink LeanPreMix LPM 304F

Test Furnace: 12 ppm Field Application: <15 ppm Original Burner: ~150 ppm

NOx Reduction Retrofits Cost Impact of Reduction Mandates

- Shape of curve confirmed in every capital project we have either done or studied
- Significant difference between 65% and 85%
- That kind of difference roughly DOUBLES the cost
 - Paying public & stockholders like the lower cost better

OK, here's the deal ...

On a big furnace or string of furnaces breeched together:

Burners SCR

CapEx ~\$6-million ~\$16-million

OpEx 0 ~\$700-900,000/yr
~\$1.4-1.6 million/yr

Excess O₂ 2% 6%
(~\$350,000/yr)

A Passion for Technology Innovation & Application

Chevron Richmond NOx Project — Huge Savings by Inspiring & Supporting the Development of Extremely Low-NOx Burners CapEx OpEx

No SCR at the boiler house! ~\$10m ~\$2m/yr

No SCR at crude unit F1100/F1160! ... ~\$10m ~\$2m/yr

No SCR at hydrogen reformer F355! ... ~\$10m ~\$2m/yr ~\$30m ~\$6m/yr

- **Output** Intense collaboration with burner suppliers
- Synergy with Chevron Phillips Chemical Co's NOx Project
- [™]EYE" thrust upgrades Energy (↓ fuel use), Yield († feed rate and run length) and Environmental (↓ emissions) performance!

